SDI-12 通信プロトコル

KN0014-00/2024年09月23日/こがねさん(著)

https://www.kumikomist.com/

■目次

1. SDI-12 とは	2
2. SDI-12 の特徴	2
3. 電気特性	2
3.1. シリアルデータライン	2
3.2. インピーダンス	3
3.3. 電源ライン	3
4. 通信仕様	4
4.1. 使用可能な文字	4
4.2. デバイスアドレス	5
4.3. コマンド	5
4.3.1. Acknowledge Active Command (a!)	6
4.3.2. Send Identification Command (al!)	6
4.3.3. Address Query Command (?!)	7
4.3.4. Change Address Command (aAb!)	7
4.3.5. Start Measurement Command (aM!)	8

	4.3.6. Service Request (a <cr><lf>)</lf></cr>	8
	4.3.7. Start Concurrent Measurement	
	Command (aC!)	9
	4.3.8. Send Data Command (aD0! aD9!)	10
	4.3.9. Additional Measurement Commands	
	(aM1! aM9!)	12
	4.3.10. Additional Concurrent Measurement	
	Commands (aC1! aC9!)	12
	4.3.11. Start Verification (aV!)	12
	4.3.12. CRC	13
	4.3.13. 拡張コマンド	14
	4.3.14. 複数行のテキストを返す拡張コマンド	14
4	.4. 大容量コマンド	15
	4.4.1. High-Volume ASCII Command (aHA!)	15
	4.4.2. High-Volume Binary Command (aHBI)	16

■文書内の記号

取り扱いにおける禁止事項(してはいけないこと)を示しています。

取扱における指示事項(必ずしなければいけないこと)を示しています。

取り扱いにおける注記事項を示しています。

取り扱いにおけるポイントを示しています。

組み込みすと KN0014-00 (1/16)

1. SDI-12 とは

SDI-12(Serial/Digital Interface at 1200 baud)は 3 線式のシリアル通信規格です。レコーダーに複数台のセンサーを数珠繋ぎ(デイジーチェーン)して計測する用途で使用されます。本インターフェースは通信と電源供給を兼ねており、低コスト、低消費電力なシステムに向いています。

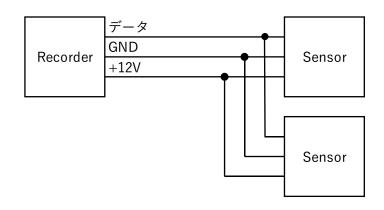


図1 SDI-12 バスの接続例

2. SDI-12 の特徴

- DC 12V を供給します。
- 半二重通信です。(スリーステートバッファー)
- 伝送速度は 1200bps です。

3. 電気特性

3.1. シリアルデータライン

シリアルデータラインは半二重であり、スリーステートバッファーです。送信データの電圧レベルは表 1 のとおりです。

表 1 送信データのロジックと電圧レベル

状態	電圧範囲
1	-0.5∼1.0 V
0	3.5∼5.5 V

組み込みすと KN0014-00 (2 / 16)

3.2. インピーダンス

SDI-12 デバイスのトランスミッターがオンの場合、その直流抵抗は 1000Ω より大きく 2000Ω より小さくなければなりません。このインピーダンスにより、最大ケーブル長はデータラインに接続されているすべてのケーブルの静電容量によって決まります。

スタンバイモードを含め、SDI-12 デバイスのトランスミッターがオフの場合、接地に対する直流抵抗は 160k \sim 360k Ω の範囲内でなければなりません。

SDI-12 センサーが 12V ラインを電源として使用しない場合、電源オフのときの GND に対するデータライン 抵抗は $160k\sim360k\Omega$ の範囲内でなければなりません。図 2 はこの等価回路を示しています。

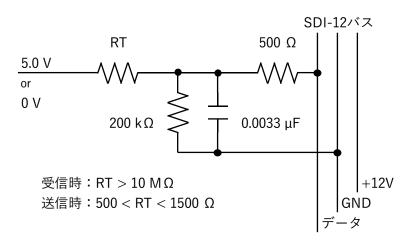


図 2 等価回路

3.3. 電源ライン

+12V は、9.6~16V の範囲となります。

組み込みすと KN0014-00 (3 / 16)

4. 诵信仕様

通信はデータライン上を ASCII データをやり取りして行います。通信設定は表 2 のとおりです。

項目仕様伝送速度1200データ長7 ビットストップビット長1 ビットパリティー偶数

表 2 通信設定

- データライン上を12ミリ秒以上無通信状態が続くと、ブレーク状態となります。
- 各コマンドの最初の1文字が、レコーダーが通信する相手のセンサーを表します。
- 自身へのコマンドではないと判断すると、センサーは省電力モードに移行します。

4.1. 一般的な測定シーケンス

- (1) レコーダーはブレークを使用して、SDI-12 バス上のすべてのセンサーを起動します。
- (2) レコーダーはアドレスを指定して、特定のセンサーに測定を行うよう指示します。
- (3) 指定されたセンサーは15ミリ秒以内に応答し、測定データを準備するのに掛かる最大時間を返します。
- (4) 測定データをすぐに利用できる場合、レコーダーはセンサーに測定値を返すよう要求します。 測定に時間が掛かる場合、レコーダーはセンサーから測定完了の合図を待ちます。その後、レコーダーはセンサーに測定データを返すよう要求します。
- (5) センサーは測定データを返します。

4.2. 使用可能な文字

データラインを流れるデータは、印刷可能な ASCII 文字である必要があります。ただしこれには 3 つの例外があります。

- (1) コマンドの応答の最後は「CR (0Dh)」と「LF (0Ah)」で終わります。
- (2) CRC.
- (3) 大容量バイナリーコマンドによる応答。

組み込みすと KN0014-00 (4 / 16)

4.3. デバイスアドレス

各コマンドの最初の文字はセンサーアドレスです。同様に、応答の最初の文字もアドレス。これによりレコーダーは、正しいセンサーからの応答であることを確認します。センサーアドレスに使用できる文字は、次のとおりです。

- 「0」: デフォルトのアドレスです。
- 「1」 ~ 「9」
- 「A」 ~ 「Z」
- $\lceil a \rceil \sim \lceil z \rceil$

4.4. コマンド

すべてのレコーダーとセンサーは表3のコマンドをサポートする必要があります。

表 3 コマンドリスト

コマンド名	追加 ver.	コマンド	応答
Acknowledge Active		a!	a <cr><lf></lf></cr>
Send Identification		aI!	allcccccccmmmmmvvvxxxxx <cr><lf></lf></cr>
Change Address	1.2	aAb!	b <cr><lf></lf></cr>
Address Query	1.2	?!	a <cr><lf></lf></cr>
Start Measurement		aM!	atttn <cr><lf></lf></cr>
Start Measurement and Request CRC **1	1.3	aMC!	atttn <cr><lf></lf></cr>
Send Data		aD0! aD9!	a <values><cr><lf> or a<values><crc><cr><lf></lf></cr></crc></values></lf></cr></values>
Additional Measurements ^{*1}		aM1! aM9!	atttn <cr><lf></lf></cr>
Additional Measurements and Request CRC **1	1.3	aMC1 aMC9!	atttn <cr><lf></lf></cr>
Start Verification *1		aV!	atttn <cr><lf></lf></cr>
Start Concurrent Measurement	1.2	aC!	atttnn <cr><lf></lf></cr>
Start Concurrent Measurement and Request CRC	1.3	aCC!	atttnn <cr><lf></lf></cr>
Additional Concurrent Measurements	1.2	aC1! aC9!	atttnn <cr><lf></lf></cr>
Additional Concurrent Measurements and Request CRC	1.3	aCC1! aCC9!	atttnn <cr><lf></lf></cr>
Continuous Measurements	1.2	aR0! aR9!	a <values><cr><lf></lf></cr></values>
Continuous Measurements and Request CRC	1.3	aRC0! aRC9!	a <values><crc><cr><lf></lf></cr></crc></values>

^{※1} このコマンドはサービスリクエストに繋がる可能性があります。

以降の通信例において「R \rightarrow S」はレコーダーからセンサーに送信するコマンド、「R \leftarrow S」はセンサーからの応答を表します。

組み込みすと KN0014-00 (5 / 16)

4.4.1. Acknowledge Active Command (a!)

SDI-12 バス上にセンサーが存在しているかの確認に使用します。

表 4 通信例

送信方向	通信例
$R \rightarrow S$	0!
R ← S	0 <cr><lf></lf></cr>

4.4.2. Send Identification Command (al!)

センサーの SDI-12 互換性レベル、型式、ファームウェアバージョンなどを取得します。

表 5 コマンド内容

	コマンド		応答
aI!		allcccccc	cmmmmmvvvxxxxxx <cr><lf></lf></cr>
а	センサーアドレス。	а	センサーアドレス。
I	コマンド。	11	対応する SDI-12 バージョン。「1.4」であれば「14」となります。
		ccccccc	8 文字でベンダーID を示します。通常は会社名の略称などを入れます。
		mmmmmm	6 文字でセンサー型式を示します。
		vvv	3 文字でセンサーバージョンを示します。
		xxxxx	その他自由に使える最大 13 文字の領域です。

表 6 通信例

送信方向	通信例
$R \rightarrow S$	0!
R ← S	013NRSYSINC1000001.2101 <cr><lf> </lf></cr>

組み込みすと KN0014-00 (6 / 16)

4.4.3. Address Query Command (?!)

センサーのアドレスを確認します。

?コマンドを受けたすべてのセンサーは、自身のアドレスを返します。?コマンドはレコーダーとセンサーを 1 対 1 で接続した状態で使用する必要があります。複数台のセンサーを接続した状態で使用すると、応答が競合します。

表 7 通信例

送信方向	通信例
$R \rightarrow S$?!
R ← S	0 <cr><lf></lf></cr>

4.4.4. Change Address Command (aAb!)

センサーのアドレスを変更します。

このコマンドに応答した後、センサーは 1 秒間他のコマンドに応答する必要はありません。その間にセンサーは、新しいアドレスを不揮発性メモリーに書き込みます。

表8 コマンド内容

	コマンド		応答
aAb!		b <cr><lf></lf></cr>	
а	現在のセンサーアドレス。	b	変更後のセンサーアドレスです。
Α	コマンド。		
b	変更後のセンサーアドレス。		

表 9 通信例

送信方向	通信例
$R \rightarrow S$	0A1!
R ← S	1 <cr><lf></lf></cr>

組み込みすと KN0014-00 (7/16)

4.4.5. Start Measurement Command (aM!)

センサーに測定を行うよう指示します。

表 10 コマンド内容

	コマンド		応答
aM!		atttn <cr><</cr>	LF>
а	センサーアドレス。	а	センサーアドレス。
М	コマンド。	ttt	センサーが測定データを準備できるまでの時間[秒]です。 「000」の場合、すぐに測定データを取得できます。ttt 時間のカウントは応答を返してから開始します。ttt 時間が経過する前に測定データを用意できた場合、レコーダーにサービスリクエストを送信します。
		n	D コマンドで測定データを返す数。[1 - 9]

表 11 通信例

送信方向	通信例
$R \rightarrow S$	0M!
R ← S	00101 <cr><lf></lf></cr>
R ← S	0 <cr><lf></lf></cr>

● M コマンドを送信する場合、事前に他のセンサーとの通信をすべて完了させておく必要があります。また M コマンドの処理中、レコーダーは他のセンサーと通信してはいけません。これはセンサーが測定データを用意できたタイミングで、サービスリクエストを送信してくるためです。

● サービスリクエストは「a<CR><LF>」です。(「4.4.6. Service Request (a<CR><LF>)」参照)

4.4.5.1. 測定の中止

センサーは M コマンドを受信してからサービスリクエストを送信するまでの間にブレークを検出すると、測定を中止する必要があります。

測定を中止した後に D コマンドを受信した場合、センサーアドレスに続いて<CR><LF>(または <CRC><CR><LF>) を返す必要があります。

4.4.6. Service Request (a<CR><LF>)

サービスリクエストはセンサーからの応答のみです。レコーダーからのコマンド送信はありません。 M コマンドにしたがい開始した測定が終了したとき、センサーはサービスリクエスト応答を行います。

組み込みすと KN0014-00 (8 / 16)

4.4.7. Start Concurrent Measurement Command (aC!)

SDI-12 バス上のセンサーに対して、同時測定を行うためのコマンドです。C コマンドを受信したセンサーは、M コマンドを受信したときと同様に測定を開始します。しかし測定を完了してもサービスリクエストを返しません。このためレコーダーは、続けて次のセンサーへ C コマンドを送信することができます。

表 12 コマンド内容

コマンド		応答	
aC!		atttnn <cr><lf></lf></cr>	
а	センサーアドレス。	а	センサーアドレス。
С	コマンド。	ttt	センサーが測定データを準備できるまでの時間[秒]です。 「000」の場合、すぐに測定データを取得できます。● ttt 時間のカウントは応答を返してから開始します。
		nn	D コマンドで測定データを返す数。

表 13 通信例

	送信方向	通信例
-	$R \rightarrow S$	0C!
Ī	R ← S	00101 <cr><lf></lf></cr>

4.4.7.1.

同時測定中に有効なコマンドを受信した場合、センサーは同時測定を中止する必要があります。

測定を中止した後に D コマンドを受信した場合、センサーアドレスに続いて<CR><LF>(または <CRC><CR><LF>) を返す必要があります。

組み込みすと KN0014-00 (9 / 16)

4.4.8. Send Data Command (aD0! ... aD9!)

センサーから測定データを取得します。

DO コマンドは、M、MC、C、CC、V または HA コマンドの後に送信します。

表 14 コマンド内容

コマンド		応答		
aD0! (aD1! aD9!)		a <values><cr><lf> or a<values><crc><cr><lf></lf></cr></crc></values></lf></cr></values>		
а	センサーアドレス。	a センサーアドレス。		
D0 D9	コマンド。	<values></values>	測定データです。{pD.d}	
		<crc></crc>	 3 文字の CRC コードです。下記いずれかのコマンドを用いた場合に付加します。 MC MC1 MC9 CC CC1 CC9 	

● D0 コマンドですべての測定データを受信できなかった場合、D1、D2 コマンドと順に送信します。

4.4.8.1. M コマンドの通信例

表 15 通信例 1

送信方向	通信例
$R \rightarrow S$	1M!
R ← S	10001 <cr><lf></lf></cr>
$R \rightarrow S$	1D0!
R ← S	1+3.14 <cr><lf></lf></cr>

組み込みすと KN0014-00 (10 / 16)

表 16 通信例 2

送信方向	通信例
$R \rightarrow S$	2M!
R ← S	20053 <cr><lf></lf></cr>
	•••
R ← S	2 <cr><lf></lf></cr>
$R \rightarrow S$	2D0!
R ← S	2+3.14+2.718+1.414 <cr><lf></lf></cr>

表 17 通信例 3

送信方向	通信例
$R \rightarrow S$	3M!
R ← S	30359 <cr><lf></lf></cr>
$R \leftarrow S$	3 <cr><lf></lf></cr>
$R \rightarrow S$	3D0!
R ← S	3+1.11+2.22+3.33+4.44+5.55+6.66 <cr><lf></lf></cr>
$R \rightarrow S$	3D1!
R ← S	3+7.77+8.88+9.99 <cr><lf></lf></cr>

4.4.8.2. Continuous Measurements (aR0! ... aR9!)

シャフトエンコーダーなど、測定対象の現象を継続的に監視するセンサーには、測定開始(M)コマンドは必要ありません。R コマンド (R0 ... R9) で直接読み取ることができます。この R コマンドの応答は、D コマンドと同じです。(「4.4.8.1. M コマンドの通信例」参照)

表 18 通信例

送信方向	通信例
$R \rightarrow S$	1R0!
R ← S	1+3.14 <cr><lf></lf></cr>

● センサーが R コマンドに対応していない場合、「a<CR><LF>」を返します。

組み込みすと KN0014-00 (11 / 16)

4.4.9. Additional Measurement Commands (aM1! ... aM9!)

追加の M コマンド (M1...M9) はセンサーに対して異なる測定要求や、キャリブレーションを実行するよう指示するために用います。追加の M コマンドの応答は、M コマンドと同じです。D コマンドでデータを収集してください。

表 19 通信例

送信方向	通信例
$R \rightarrow S$	0M1!
R ← S	00011 <cr><lf></lf></cr>
$R \leftarrow S$	0 <cr><lf></lf></cr>
$R \rightarrow S$	0D0!
R ← S	0+3.14 <cr><lf></lf></cr>

● データのない追加の M コマンドを受信すると、センサーは「a0000<CR><LF>」を返します。

4.4.10. Additional Concurrent Measurement Commands (aC1! ... aC9!)

追加の C コマンド(C1...C9)はセンサーに対して異なる測定要求や、キャリブレーションを実行するよう指示するために用います。追加の C コマンドの応答は、C コマンドと同じです。D コマンドでデータを収集してください。

● データのない追加の C コマンドを受信すると、センサーは「a0000<CR><LF>」を返します。

4.4.11. Start Verification (aV!)

センサーの動作確認を行います。

本コマンドの応答は M コマンドと同じです。D コマンドで診断結果を得られます。

表 20 通信例

送信方向	通信例
$R \rightarrow S$	øv!
R ← S	00011 <cr><lf></lf></cr>
R ← S	0 <cr><lf></lf></cr>
$R \rightarrow S$	ØDØ!
R ← S	0+1 <cr><lf></lf></cr>

組み込みすと KN0014-00 (12 / 16)

4.4.12. CRC

MC、CC、RC コマンドを使用した場合、D コマンドまたは R コマンドの応答に CRC が付加されます。CRC の計算は、パリティーを付加する前の値に対して行います。またアドレスから CR の手前までのデータに対して計算を行います。その CRC の計算条件は下記のとおりです。

● 多項式:0xA001
● 初期値:0x0000
● 出力 XOR:0x0000
● シフト方向:右
● 入力反転:なし
● 出力反転:なし

上記計算により得られた16ビットのCRCを、次のように処理して3文字の<CRC>とします。

● 1 文字目: 0x40 | (CRC >> 12)

● 2文字目:0x40 | ((CRC >> 6) & 0x3F)

● 3 文字目: 0x40 | (CRC & 0x3F)

例)

- (1) 「0+3.14」を CRC-16 計算すると「0xFC5A」となります。
- (2) 2進数では「1111 1100 0101 1010」です。
- (3) 3文字に分割すると「1111」「11 0001」「01 1010」となります。
- (4) 0x40とORを取り「0100 1111」「0111 0001」「0101 1010」です。
- (5) 結果<CRC>は「OqZ」となります。

表 21 通信例

送信方向	通信例
$R \rightarrow S$	ØMC!
R ← S	00001 <cr><lf></lf></cr>
$R \rightarrow S$	0D0!
R ← S	0+3.140qZ <cr><lf></lf></cr>

組み込みすと KN0014-00 (13 / 16)

4.4.13. 拡張コマンド

これまで紹介してきたコマンドだけでは、キャリブレーションなどの制御が不十分である場合があります。このようなときのために、各社独自の拡張コマンドを用意している場合があります。

- 通常コマンドと同じく、センサーアドレスで始まり「!」で終わること。
- 通常応答と同じく、センサーアドレスで始まり<CR><LF>で終わること。
- コマンド名の先頭に「X」を付けることが推奨されています。現時点では仕様として明記されていませんが、 将来仕様化される可能性があります。

4.4.14. 複数行のテキストを返す拡張コマンド

複数行のテキストを返す拡張コマンドの仕様です。

- テキストの開始に「STX (02h)」を、テキストの終わりに「ETX (03h)」を配置します。
- センサーアドレス、<STX>、<CR>、<LF>、<ETX>を除く各行のテキストは75文字以内であること。
- <CRC>を付加することはできません。
- 各テキスト行の送信間隔は 150 ミリ秒以内であること。次のテキスト行の最初の 1 ビットが 150 ミリ秒以内 に受信されない場合、レコーダーはテキストの終わりと判断します。

表 22 通信例

送信方向	通信例
$R \rightarrow S$	ØXHELP!
R ← S	<pre>0<stx>This is the first line of text.<cr><lf></lf></cr></stx></pre>
R ← S	This is the second line of text. <cr><lf></lf></cr>
R ← S	This is the third and final line of text. <cr><lf><etx></etx></lf></cr>

組み込みすと KN0014-00 (14 / 16)

4.5. 大容量コマンド

同時測定(C) コマンドを拡張して、センサーから最大 999 個のパラメーターを取得することが可能となります。

表 23 コマンドリスト

コマンド名	追加 ver.	コマンド	応答
High-Volume ASCII	1.4	aHA!	atttnnn <cr><lf></lf></cr>
High-Volume Binary	1.4	aHB!	atttnnn <cr><lf></lf></cr>

4.5.1. High-Volume ASCII Command (aHA!)

HA コマンドの C コマンドと比較した特徴は下記のとおりです。

- Dコマンドは最大 999 まで指定できます。(aD0! ... aD999!)
- 「D」に続く数字に「0」を入れてはいけません。
- Dコマンド応答の<values>の最大文字数は75文字です。
- Dコマンドの応答には必ず<CRC>が付きます。

表 24 通信例

送信方向	通信例	
$R \rightarrow S$	ØНА!	
R ← S	0045012 <cr><lf></lf></cr>	
$R \rightarrow S$	1CC!	
R ← S	101504 <cr><lf></lf></cr>	
$R \rightarrow S$	1D0!	
R ← S	1+1.23+2.34+345+4.4678KoO <cr><lf></lf></cr>	
$R \rightarrow S$	0D0!	
R ← S	0+1.234-4.56+12354-0.00045+2.223+145.5+7.7003+4328.8+9+10+11.433+12Ba] <cr><lf></lf></cr>	

組み込みすと KN0014-00 (15 / 16)

4.5.2. High-Volume Binary Command (aHB!)

大容量バイナリー測定により、ASCII 転送より効率的に大量のデータを収集できます。

- Dコマンドではなく、DBコマンドでバイナリデータを取得します。(aDB0! ... aDB999!)
- DB コマンド応答にはパリティーは付きません。
- 1度の DB コマンドの応答内は、すべて同一のデータタイプです。
- マルチバイトのバイナリーデータは、最下位バイトから順に送信します。

表 25 DB コマンド応答のデータパケット

アドレス	パケットサイズ	データタイプ	バイナリーデータ	CRC
ASCII	バイナリー データ長	表 26 参照	測定データ	
1バイト	2 バイト	1バイト	1000 バイト以下	2バイト

表 26 データタイプ

データタイプ	レンジ	サイズ	
0	無効な要求	データなし	
1	-128 ~ 127	8 ビット符号あり整数	
2	0 ~ 255	8 ビット符号なし整数	
3	-32,768 ~ 32,767	16 ビット符号あり整数	
4	0 ~ 65,535	16 ビット符号なし整数	
5	-2,147,483,648 ~ 2,147,483,647	32 ビット符号あり整数	
6	0 ~ 4,294,967,295	32 ビット符号なし整数	
7	-9,223,372,036,854,775,808 ~	64 ビット符号あり整数	
1	9,223,372,036,854,775,807	04 C / F 付 ろ W / 定数	
8	$0 \sim 18,446,744,073,709,551,615$	64 ビット符号なし整数	
9	$\pm 1.18 \times 10^{-38} \sim \pm 3.4 \times 10^{38}$	IEEE 32 ビット浮動小数点数	
10	$\pm 2.23 \times 10^{-308} \sim \pm 1.80 \times 10^{308}$	IEEE 64 ビット浮動小数点数	

表 27 通信例

送信方向	通信例
$R \rightarrow S$	1HB!
$R \leftarrow S$	1005004 <cr><lf></lf></cr>
$R \rightarrow S$	1DB0!
R ← S	0x31 0x04 0x00 0x03 0xFF 0xFF 0x01 0x00 0xC2 0xAC
$R \rightarrow S$	1DB1!
R ← S	0x31 0x08 0x00 0x09 0xC3 0xF5 0x48 0x40 0x00 0x00 0x80 0x3F 0x3B 0x6E
$R \rightarrow S$	1DB2!
R ← S	0x31 0x00 0x00 0x00 0x0E 0xFC

組み込みすと KN0014-00 (16 / 16)